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Covariance & 
Contravariance



Representing Vectors

Two operations in linear algebra

▪ Contravariant:
Linear combination of vectors

𝐯 =෍

𝑖=1

𝑛

𝑥𝑖𝐛𝑖 → 𝐯 ≡

𝑥1
⋮
𝑥𝑛

▪ Covariant:
Projection on vectors (w/scalar product)

𝐯 ≡
𝐯, 𝐛1
⋮

𝐯, 𝐛𝑛
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Where is the difference?

Change of basis

▪ Contravariant:

▪ Keep same output vector:
𝐛𝑖 → 𝐓𝐛𝑖 requires  𝐱 → 𝐓−1𝐱

▪ Covariant:

𝑓 𝐱 =
𝐱, 𝐛1
⋮

𝐱, 𝐛𝑛

▪ Keep same output vector:
𝐛𝑖 → 𝐓𝐛𝑖 requires  𝐱 → 𝐓𝐱
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Awesome Video

Tensors, Co-/Contra-Variance

▪ „Tensors Explained Intuitively: Covariant, 
Contravariant, Rank“
Physics Videos by Eugene Khutoryansky

https://www.youtube.com/watch?v=CliW7kSxxWU



Covariance & Contravariance

Linear map
𝐟: 𝑉1 → 𝑉2

Matrix representation (standard basis)

𝐌 ∈ ℝ𝑑1×𝑑2

Change of basis

𝐁1 =

| |

𝐛1
1

⋯ 𝐛𝑑1
1

| |

, 𝐁2 =

| |

𝐛1
2

⋯ 𝐛𝑑2
2

| |

New matrix representation (bases 𝐁1, 𝐁2)

𝐁2
−1𝐌𝐁1 ∈ ℝ𝑑1×𝑑2



Covariance & Contravariance

Situation
𝐟: 𝑉1 → 𝑉2

Transformation law

▪ Input vectors 𝐱 (𝐌𝐱): 𝐱 𝐁1 = 𝐁1𝐱 𝐈 (covariant)

▪ Output vectors 𝐲 = 𝐌𝐱: 𝐲 𝐁2 = 𝐁2
−1𝐲 𝐈 (contravariant)

𝐁2
−1𝐌𝐁1𝐁1

𝐈

𝐁2

𝐈𝐌

mapping M

𝐱

𝐲

covariant

contravariant



Covariance & Contravariance
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▪ Output vectors 𝐲 = 𝐌𝐱: 𝐲 𝐁2 = 𝐁2
−1𝐲 𝐈 (contravariant)
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Covariance & Contravariance

𝐁2
−1 𝐌𝐁1

transforms row-vectors

𝐁2
−1𝐌 𝐁1

transforms column-vectors

𝑓 𝐱 ← 𝐁2
−1𝐌𝐁1 ← 𝐱



Scalar Product

General scalar product

𝐱, 𝐲 ∈ ℝ𝑑

𝐱, 𝐲 = 𝐱T 𝐐 𝐲,

𝐐 = 𝐐T, 𝐐 > 0

Change of basis

𝐱, 𝐲 𝐈 = 𝐱T 𝐐 𝐲

𝐱, 𝐲 𝐁 = 𝐱T ⋅ 𝐁𝐓 ⋅ 𝐐 ⋅ 𝐁 ⋅ 𝐲

𝐁𝐈

𝐱 → 𝐁𝐱,
𝐲 → 𝐁𝐲

mapping M

𝐲

⟨𝐱, 𝐲⟩

covariant

scalar
(no coordinate system)

𝐱



Three shades of dual

PCA, SVD, MDS



Inputs and Outputs

Squaring a Matrix 

▪ Possibility 1: 𝐀 ⋅ 𝐀𝑇

▪ Possibility 2: 𝐀𝑇 ⋅ 𝐀

Input (“covariant”) side 

of the matrix

Output (“contravariant”)

side of the matrix

=

=

⋅

⋅
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Tensors:
Multi-Linear Maps



Tensors

General notion: Tensor

▪ Tensor: multi-linear form*) with 𝑟 ∈ ℕ input vectors

𝐓: 𝑉1, … , 𝑉𝑛, 𝑉𝑛+1, … , 𝑉𝑟 → 𝐹

▪ “Rank 𝑟” tensor

▪ Linear in each input (when keeping the rest constant)

▪ Each input can be covariant or contravariant

▪ (𝑛,𝑚) tensor

▪ 𝑟 = 𝑛 + 𝑚

▪ 𝑛 – contravariant inputs

▪ 𝑚 – covariant inputs

(usually: field 𝐹 = ℝ)

*) i.e.: multi-linear mapping / function



Tensors

Representation

▪ Represented as r-dimensional array

𝑡𝑗1,𝑗2,…,𝑗𝑚
𝑖1,𝑖2,…,𝑖𝑛

▪ n – contravariant inputs (“indices”)

▪ m – covariant inputs (“indices”)

▪ Mapping rule

𝐓 𝐯 1 , … , 𝐯 𝑛 , 𝐰 1 , … ,𝐰 𝑚 ≔

෍

𝑖1=0,…,𝑛𝑖1

⋯ ෍

𝑖𝑛=0,…,𝑛𝑖𝑛

෍

𝑗1=0,…,𝑛𝑗1

⋯ ෍

𝑗𝑚=0,…,𝑛𝑗𝑚

𝑣𝑖1
1
⋯𝑣𝑖𝑛

𝑛
𝑤𝑗1

1
⋯𝑤𝑗𝑚

𝑚
𝑡𝑗1,𝑗2,…,𝑗𝑚
𝑖1,𝑖2,…,𝑖𝑛

(Note: writing the application of 𝐓 as multi-linear mapping here)



Tensors

Remarks

▪ No difference between co-/contravariant dimensions
in terms of numerical representation

▪ Generalization of matrix

Example

𝐓
𝑥1
𝑥2

,
𝑦1
𝑦2

,

𝑧1
𝑧2
𝑧3

= 42𝑥1𝑦1𝑧1 + 23𝑥1𝑦1𝑧2 +⋯+ 16𝑥2𝑦2𝑧3

▪ Purely linear polynomial in each input parameter
when all others remain constant.

▪ 3D array - 2 × 2 × 3 combinations of coefficients



Einstein Notation

Example: Quadratic polynomial ℝ3 → ℝ3

𝑝𝑗 𝐱 = 𝐱T𝐀𝐱 + 𝐛𝐱 + c

𝑝𝑗 = ෍

𝑘=1

3

෍

𝑙=1

3

𝑥𝑘𝑥𝑙 𝑎𝑘𝑙
𝑗

+ ෍

𝑘=1

3

𝑥𝑘𝑏𝑘
𝑗
+ c𝑗

Tensor notation

▪ Input: 𝑥𝑖 , 𝑖 = 1. . 3

▪ Output: 𝑝𝑗 , 𝑗 = 1. . 3

▪ Quadratic form (Matrix) 𝐀: 𝑎𝑘𝑙

▪ Linear form (Co-Vector) 𝐛: 𝑏𝑘

▪ Constant 𝑐



Einstein Notation

Example: Quadratic polynomial ℝ3 → ℝ3

𝑝𝑗 𝐱 = 𝐱T𝐀𝐱 + 𝐛𝐱 + c

Einstein notation (implicit sums over common indices)

𝑝𝑗 = 𝑥𝑘𝑥𝑙𝑎𝑘𝑙
𝑗
+ 𝑥𝑘𝑏𝑘

𝑗
+ c𝑗

Tensor notation

▪ Input: 𝑥𝑖 , 𝑖 = 1. . 3

▪ Output: 𝑝𝑗 , 𝑗 = 1. . 3

▪ Quadratic form (Matrix) 𝐀: 𝑎𝑘𝑙

▪ Linear form (Co-Vector) 𝐛: 𝑏𝑘

▪ Constant 𝑐



Further Examples

Examples

▪ (𝑛,𝑚)-tensor

▪ n contravariant “indices”

▪ m covariant “indices”

▪ Matrix: (1,1)-tensor

▪ Scalar product: (0,2)-tensor

▪ Vector: (1,0)-tensor

▪ Co-vector: (0,1)-tensor

▪ Geometric vectors: (1,0)-tensors 



Covariant Derivatives?

Examples

▪ Geometric vectors: (1,0) tensors 

▪ Derivatives*) / gradients / normal vectors: (0,1) tensors
*) to be precise:

▪ Spatial derivatives co-vary for changes of the basis of the space

– 𝑓:ℝ𝑛 → ℝ, 𝑓 𝐱 = 𝐲, ⇒ 𝛻𝑓 is covariant (0,1).

– Examples: Gradient vector

▪ Derivatives of vector functions by unrelated dimensions remain 
contravariant

– 𝑓:ℝ → ℝ𝑛, 𝑓 𝑡 = 𝐲, ⇒
d

d𝑡
𝑓 remains contravariant (1,0).

– Examples: velocity, acceleration

▪ Mixed case: 𝑓:ℝ𝑛 → ℝ𝑚, 𝛻𝑓 = 𝐽𝑓 is a (1,1)-tensor (1,1)



Example: Plane Equation

Plane equation(s)

▪ Parametric:
𝐱 = 𝜆1𝐫1 + 𝜆2𝐫2 + 𝐨

▪ Implicit:
𝐧, 𝐱 − 𝑑 = 0

Transformation 𝐱 → 𝐓𝐱

▪ Parametric:
𝐓𝐱 = 𝐓 𝜆1𝐫1 + 𝜆2𝐫2 + 𝐨 = 𝜆1𝐓𝐫1 + 𝜆2𝐓𝐫2 + 𝐓𝐨

▪ Implicit:

𝐧, 𝐓𝐱 − 𝑑 = 𝐧T𝐓 𝐱 − 𝑑0



More Structure?

Connecting

▪ Integrals

▪ Derivatives

▪ In higher dimensions

▪ And their transformation rules

“Exterior Calculus”

▪ Unified framework

▪ Beyond this lecture (take a real math course :-) )



Vectors & Covectors
in Function Spaces



Remark: Function Spaces

Discrete vector spaces

▪ Picking entries by index is a linear operation

▪ Can be represented by projection to vector 
(multiplication with “co-vector”)

Example

▪ 𝐱 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)

▪ 𝐱 ↦ 𝑥4 is a linear maps

▪ Represented by 0,0,0,1,0 , 𝐱

▪ “Linear form”: 𝐱 ↦ 0,0,0,1,0 , 𝐱 ,
in short, ⋅, 0,0,0,1,0 , shorter: 0,0,0,1,0 =

𝟎
𝟎
𝟎
𝟏
𝟎

T



Linear Forms in Function Spaces

In function spaces

▪ Picking entries by x-axis is a linear operation

▪ Cannot be represented by projection to another 
function (multiplication with “co-vector”)

Example

▪ 𝑓:ℝ → ℝ, 𝑓 𝑥 = sin 𝑥

▪ 𝐿: ℝ → ℝ → ℝ, 𝐿: 𝑓 ↦ 𝑓 4.0 is a linear map

▪ A function 𝑔 with 𝑔, 𝑓 = 𝑓 4.0 does not exist

𝑓
𝑔

න
ℝ

𝑓 𝑥 𝑔 𝑥 𝑑𝑥 = 0

𝑔 𝑥 = ቊ
1, if 𝑥 = 4
0, elsewhere



Dirac’s “Delta Function”

Dirac Delta “Function”

▪ ℝ׬ 𝛿 𝑥 𝑑𝑥 = 1, zero everywhere but at 𝑥 = 0

▪ Idealization (“distribution”) – think of very sharp peak

f(x)

x

f(x)

x

f(x)

x

f(x)

x
න
Ω

𝑓 𝑥 𝑑𝑥 = 1



Distributions

Distributions

▪ Adding all linear forms to the vector space

▪ All linear mappings from the function space to ℝ

▪ This makes the situation symmetric

▪ 𝛿 is a distribution, not a (traditional) function

Formalization

▪ Different approaches (details beyond our course)

▪ Limits of “bumps”

▪ Space of linear-forms (“co-vectors”, “dual functions”)

▪ Difference of complex functions on Riemann sphere (exotic)


