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Covariance &
Contravariance



Representing Vectors

Two operations in linear algebra

= Contravariant:
| inear combination of vectors

S =)

f(x)

=1 An
= Covariant:
Projection on vectors (w/scalar product) . —

(v,by)

(v, b}
b




Where is the difference?

Change of basis n (
X
= Contravariant: f(x) = le-b,; X =15, J
=1 / !
= Keep same output vector: b%/f’j_
b; » Tb; requires x - T~ 1x /b 2 =1
2
= Covariant:
<X1b1>
fe=(
(x,by)

= Keep same output vector:
b; - Tb; requires x - Tx




Awesome Video

Tensors, Co-/Contra-Variance

= ,Tensors Explained Intuitively: Covariant,
Contravariant, Rank”
Physics Videos by Eugene Khutoryansky

https://www.youtube.com/watch?v=CliW 7kSxxWU



Covariance & Contravariance

Linear map
f: V1 — VZ
Matrix representation (standard basis)
M e ]Rdlxdz

Change of basis

| | | |
B, = (bgl) bglll) , B, = bgz) bffz)
| | | |

New matrix representation (bases B, B,)
B;1MB, € R%:*%



Covariance & Contravariance

Situation covariant
f: V1 — VZ X
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contravariant
Transformation law
= Input vectors x (Mi): X[p,1 = Bixpy (covariant)

= Output vectors y = Mx: ypg. 1 = B3 'y (contravariant)



Covariance & Contravariance

Situation covariant
f: V1 — VZ X
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contravariant
Transformation law
= Input vectors x (Mi): X[p,1 = Bixpy (covariant)

= Output vectors y = Mx: ypg. 1 = B3 'y (contravariant)



Covariance & Contravariance

f(x) « B;'MB; « x

B;"(MB,)

transforms row-vectors

(B;"M)B,

transforms column-vectors



Scalar Product covariant

X Yy
General scalar product
%, v € R?
(Xl y> — XT Q y,
(Q o QT, Q > O) )
Scaltggystem
Change Of baSiS I _00009 , B (no coordi )
X, =X ,
(] Qy o

(%, V) =x' -[BT-Q-B]-y



Three shades of dual

PCA, SVD, MDS




Inputs and Outputs

Input (“‘covariant”) side
of the matrix

<

Output (‘contravariant’)
j> side of the matrix

Squaring a Matrix iy
= Possibility 1: A - AT & : = &

= Possibility 2: AT - A

= - = =




A Story about Dual Spaces
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lensors:
Multi-Linear Maps



Tensors

General notion: Tensor
= Tensor: multi-linear form” with » € N input vectors
T:Vy, ..., Vo, Vi1, oo, Vo = F (usually: field F = R)
= "Rank r”" tensor
= Linear in each input (when keeping the rest constant)

= Each input can be covariant or contravariant
= (n,m) tensor
=r =n-4+m
= n — contravariant inputs
= m — covariant inputs

" i.e.: multi-linear mapping / function



Tensors

Representation
= Represented as r-dimensional array

til’l:'Z""’in

J1sJ2sm]m

= n — contravariant inputs (“indices”)
= m — covariant inputs (“indices”)

= Mapping rule
T(vD, ..., v, w,  wln) =

(1) (Tl) (1) (m) il'iZ:---;in
Z Z z Z Uiy Vi Wi W e

i1:0,...,ni1 in:O,...,nin j1:0,...,nj1 jm:O,...,njm

(Note: writing the application of T as multi-linear mapping here)



Tensors

Remarks

= No difference between co-/contravariant dimensions
INn terms of numerical representation

= Generalization of matrix

Example
X “1
T (x;)’( ),(Zz> = 42x,V,21 + 23%x1V12p + -+ 16x,V, 25

Z3

= Purely linear polynomial in each input parameter
when all others remain constant.

= 3D array - 2 X 2 X 3 combinations of coefficients



Einstein Notation

Example: Quadratic polynomial R® - R?
pj(x) = XTAX + bx + C

- - _
p] — Z XXl akl + 2 xkbljc + Cj
] k=11=1 ] _k=1 ]
Tensor notation
= Input: x;, 1 =1..3 = Quadratic form (Matrix) A: ay;

« Output: p/,j =1..3 = Linear form (Co-Vector) b: b,
= Constant ¢



Einstein Notation

Example: Quadratic polynomial R® - R?
p/(x) = xTAx +bx +c

Einstein notation (|mpI|C|t sums over common indices)
p) = xkxlakl + xkb] + ¢/

Tensor notation
= Input: x;, i = 1..3 = Quadratic form (Matrix) A: ay;
= Qutput: p/,j = 1..3 = Linear form (Co-Vector) b: b,
= Constant ¢



Further Examples

Examples

= (n, m)-tensor
= N contravariant “indices”
= m covariant “indices”

= Matrix: (1,1)-tensor

= Scalar product: (0,2)-tensor

= Vector: (1,0)-tensor

= Co-vector: (0,1)-tensor

= Geometric vectors: (1,0)-tensors



Covariant Derivatives?

Examples
= Geometric vectors: (1,0) tensors

= Derivatives® / gradients / normal vectors: (0,1) tensors
") 10 be precise:
= Spatial derivatives co-vary for changes of the basis of the space
- fR*"> R, f(x)=y, = Vfiscovariant (0,1).
—- Examples: Gradient vector
= Derivatives of vector functions by unrelated dimensions remain
contravariant
- fR->R" f(t) =y, = %f remains contravariant (1,0).

— Examples: velocity, acceleration
= Mixed case: f:R™ - R™,Vf = J¢is a (1,1)-tensor (1,1)



Example: Plane Equation

Plane equation(s)

= Parametric:
X=A4r +A,1,+0

= Implicit:
(nx)—d=0

Transformation x - Tx

= Parametric:
Tx = T(/11r1 + /121‘2 + 0) — /11Tl‘1 + /12Tl"2 + TO
= |mplicit:
(n, Tx) —d = (nTT)x — d0O



More Structure?

Connecting
= [ntegrals
= Derivatives

= [n higher dimensions
= And their transformation rules

“Exterior Calculus”
= Unified framework
= Beyond this lecture (take a real math course :-) )



Vectors & Covectors
IN Function Spaces




Remark: Function Spaces

Discrete vector spaces
= Picking entries by index is a linear operation

= Can be represented by projection to vector
(multiplication with “co-vector”)

Example
"X = (x1»x2»x3»x4» xS)
= X b X, IS alinear maps
= Represented by ((0,0,0,1,0), x)

= “Linear form”: x » ((0,0,0,1,0), x), .
In short, { -, (0,0,0,1,0)), shorter: (0,0,0,1,0)= ()

O m O OO



Linear Forms in Function Spaces

In function spaces
= Picking entries by x-axis is a linear operation

= Cannot be represented by projection to another
function (multiplication with “co-vector”)

g () = 1,ifx =4
f g\ = 0, elsewhere

Example VoV

" fiR->R, f(x) =sin(x)
*L:(R->R)->R, L:f e f(40) isalinear map
= A function g with (g, ) = f(4.0) does not exist

[ rergar =0
R



[ /()

Dirac’s “Delta Function”

[ /()

[ /()

-

T

[ /() J

X

X

Dirac Delta “Function”
- fR d(x)dx =1, zero everywhere butatx =0

jﬂf(x)dx =1

= |dealization (“distribution”) — think of very sharp peak



Distributions

Distributions

= Adding all linear forms to the vector space
= All linear mappings from the function space to R

= This makes the situation symmetric
= § is a distribution, not a (traditional) function

Formalization

= Different approaches (details beyond our course)
« Limits of "bumps”
= Space of linear-forms (“co-vectors”, “dual functions”)
= Difference of complex functions on Riemann sphere (exotic)



