Modelling 1

SUMMER TERM 2020

ADDENDUM

Co- and Contravariance

Representing Vectors

Two operations in linear algebra

Contravariant:

Linear combination of vectors

$$\mathbf{v} = \sum_{i=1}^{n} x_i \mathbf{b}_i \quad \rightarrow \quad \mathbf{v} \equiv \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Covariant:

Projection on vectors (w/scalar product)

$$\mathbf{v} \equiv \begin{pmatrix} \langle \mathbf{v}, \mathbf{b}_1 \rangle \\ \vdots \\ \langle \mathbf{v}, \mathbf{b}_n \rangle \end{pmatrix}$$

Where is the difference?

Change of basis

• Contravariant:
$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i \mathbf{b}_i$$

- Keep same output vector: $\mathbf{b}_i \to \mathbf{Tb}_i$ requires $\mathbf{x} \to \mathbf{T}^{-1}\mathbf{x}$
- Covariant:

$$f(\mathbf{x}) = \begin{pmatrix} \langle \mathbf{x}, \mathbf{b}_1 \rangle \\ \vdots \\ \langle \mathbf{x}, \mathbf{b}_n \rangle \end{pmatrix}$$

• Keep same output vector: $\mathbf{b}_i \to \mathbf{Tb}_i$ requires $\mathbf{x} \to \mathbf{Tx}$

Awesome Video

Tensors, Co-/Contra-Variance

 "Tensors Explained Intuitively: Covariant, Contravariant, Rank"
 Physics Videos by Eugene Khutoryansky

https://www.youtube.com/watch?v=CliW7kSxxWU

Linear map

$$\mathbf{f}: V_1 \to V_2$$

Matrix representation (standard basis)

$$\mathbf{M} \in \mathbb{R}^{d_1 \times d_2}$$

Change of basis

$$\mathbf{B}_{1} = \begin{pmatrix} \mathbf{b}_{1}^{(1)} & \cdots & \mathbf{b}_{d_{1}}^{(1)} \\ \mathbf{b}_{1}^{(1)} & \cdots & \mathbf{b}_{d_{1}}^{(1)} \end{pmatrix}, \qquad \mathbf{B}_{2} = \begin{pmatrix} \mathbf{b}_{1}^{(2)} & \cdots & \mathbf{b}_{d_{2}}^{(2)} \\ \mathbf{b}_{1}^{(1)} & \cdots & \mathbf{b}_{d_{2}}^{(1)} \end{pmatrix}$$

New matrix representation (bases B_1 , B_2)

$$\mathbf{B}_2^{-1}\mathbf{M}\mathbf{B}_1 \in \mathbb{R}^{d_1 \times d_2}$$

Situation

Transformation law

- Input vectors \mathbf{x} ($\mathbf{M}\mathbf{x}$): $\mathbf{x}_{[\mathbf{B}_1]} = \mathbf{B}_1\mathbf{x}_{[\mathbf{I}]}$ (covariant)
- Output vectors $\mathbf{y} = \mathbf{M}\mathbf{x}$: $\mathbf{y}_{[\mathbf{B}_2]} = \mathbf{B}_2^{-1}\mathbf{y}_{[\mathbf{I}]}$ (contravariant)

Situation

Transformation law

- Input vectors \mathbf{x} ($\mathbf{M}\mathbf{x}$): $\mathbf{x}_{[\mathbf{B_1}]} = \mathbf{B_1}\mathbf{x}_{[\mathbf{I}]}$ (covariant)
- Output vectors $\mathbf{y} = \mathbf{M}\mathbf{x}$: $\mathbf{y}_{[\mathbf{B}_2]} = \mathbf{B}_2^{-1}\mathbf{y}_{[\mathbf{I}]}$ (contravariant)

$$f(\mathbf{x}) \leftarrow \mathbf{B}_2^{-1}\mathbf{M}\mathbf{B}_1 \leftarrow \mathbf{x}$$

$$B_2^{-1}(MB_1)$$

transforms row-vectors

$$(\mathbf{B}_2^{-1}\mathbf{M})\mathbf{B}_1$$

transforms column-vectors

Scalar Product

General scalar product

$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$
 $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{Q} \mathbf{y},$
 $(\mathbf{Q} = \mathbf{Q}^T, \mathbf{Q} > 0)$

$$\langle \mathbf{x}, \mathbf{y} \rangle_{[\mathbf{I}]} = \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{y}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle_{[\mathbf{B}]} = \mathbf{x}^{\mathrm{T}} \cdot [\mathbf{B}^{\mathrm{T}} \cdot \mathbf{Q} \cdot \mathbf{B}] \cdot \mathbf{y}$$

$$x \rightarrow Bx,$$
 $y \rightarrow By$

Three shades of dual PCA, SVD, MDS

Inputs and Outputs

Input ("covariant") side of the matrix

Squaring a Matrix

• Possibility 1: $\mathbf{A} \cdot \mathbf{A}^T$

• Possibility 2: $\mathbf{A}^T \cdot \mathbf{A}$

A Story about Dual Spaces

Tensors: Multi-Linear Maps

Tensors

General notion: Tensor

■ Tensor: multi-linear form*) with $r \in \mathbb{N}$ input vectors

$$T: V_1, \dots, V_n, V_{n+1}, \dots, V_r \to F$$
 (usually: field $F = \mathbb{R}$)

- "Rank r" tensor
- Linear in each input (when keeping the rest constant)
- Each input can be covariant or contravariant
 - (n, m) tensor
 - r = n + m
 - n contravariant inputs
 - m covariant inputs

Tensors

Representation

Represented as r-dimensional array

$$t_{j_1,j_2,...,j_m}^{i_1,i_2,...,i_n}$$

- n contravariant inputs ("indices")
- m covariant inputs ("indices")
- Mapping rule

$$\mathbf{T}(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}, \mathbf{w}^{(1)}, \dots, \mathbf{w}^{(m)}) := \sum_{i_1 = 0, \dots, n_{i_1}} \dots \sum_{i_n = 0, \dots, n_{i_n}} \dots \sum_{j_m = 0, \dots, n_{j_m}} v_{i_1}^{(1)} \dots v_{i_n}^{(n)} w_{j_1}^{(1)} \dots w_{j_m}^{(m)} t_{j_1, j_2, \dots, j_m}^{i_1, i_2, \dots, i_n}$$

(Note: writing the application of \mathbf{T} as multi-linear mapping here)

Tensors

Remarks

- No difference between co-/contravariant dimensions in terms of numerical representation
- Generalization of matrix

Example

$$\mathbf{T}\left(\binom{x_1}{x_2}, \binom{y_1}{y_2}, \binom{z_1}{z_2}_{Z_3}\right) = 42x_1y_1z_1 + 23x_1y_1z_2 + \dots + 16x_2y_2z_3$$

- Purely linear polynomial in each input parameter when all others remain constant.
- 3D array $2 \times 2 \times 3$ combinations of coefficients

Einstein Notation

Example: Quadratic polynomial $\mathbb{R}^3 \to \mathbb{R}^3$

$$p^{j}(\mathbf{x}) = \mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{x} + \mathbf{c}$$

$$p^{j} = \left[\sum_{k=1}^{3} \sum_{l=1}^{3} x_{k} x_{l} a_{kl}^{j}\right] + \left[\sum_{k=1}^{3} x_{k} b_{k}^{j}\right] + \mathbf{c}^{j}$$

Tensor notation

- Input: x_i , i = 1...3
- Output: p^{j} , j = 1...3
- Quadratic form (Matrix) **A**: a_{kl}
- Linear form (Co-Vector) b: b_k
- Constant c

Einstein Notation

Example: Quadratic polynomial $\mathbb{R}^3 \to \mathbb{R}^3$

$$p^{j}(\mathbf{x}) = \mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{x} + \mathbf{c}$$

Einstein notation (implicit sums over common indices)

$$p^j = x_k x_l a_{kl}^j + x_k b_k^j + c^j$$

Tensor notation

- Input: x_i , i = 1...3
- Output: p^{j} , j = 1...3
- Quadratic form (Matrix) **A**: a_{kl}
- Linear form (Co-Vector) b: b_k
- Constant c

Further Examples

Examples

- (n, m)-tensor
 - n contravariant "indices"
 - m covariant "indices"
- Matrix: (1,1)-tensor
- Scalar product: (0,2)-tensor
- Vector: (1,0)-tensor
- Co-vector: (0,1)-tensor
- Geometric vectors: (1,0)-tensors

Covariant Derivatives?

Examples

- Geometric vectors: (1,0) tensors
- Derivatives*) / gradients / normal vectors: (0,1) tensors
 *) to be precise:
 - Spatial derivatives co-vary for changes of the basis of the space
 - $-f: \mathbb{R}^n \to \mathbb{R}$, $f(\mathbf{x}) = \mathbf{y}$, $\Rightarrow \nabla f$ is covariant (0,1).
 - Examples: Gradient vector
 - Derivatives of vector functions by unrelated dimensions remain contravariant
 - $-f: \mathbb{R} \to \mathbb{R}^n$, $f(t) = \mathbf{y}$, $\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} f$ remains contravariant (1,0).
 - Examples: velocity, acceleration
 - Mixed case: $f: \mathbb{R}^n \to \mathbb{R}^m$, $\nabla f = J_f$ is a (1,1)-tensor (1,1)

Example: Plane Equation

Plane equation(s)

Parametric:

$$\mathbf{x} = \lambda_1 \mathbf{r}_1 + \lambda_2 \mathbf{r}_2 + \mathbf{o}$$

Implicit:

$$\langle \mathbf{n}, \mathbf{x} \rangle - d = 0$$

Transformation $x \rightarrow Tx$

Parametric:

$$\mathbf{T}\mathbf{x} = \mathbf{T}(\lambda_1\mathbf{r}_1 + \lambda_2\mathbf{r}_2 + \mathbf{o}) = \lambda_1\mathbf{T}\mathbf{r}_1 + \lambda_2\mathbf{T}\mathbf{r}_2 + \mathbf{T}\mathbf{o}$$

Implicit:

$$\langle \mathbf{n}, \mathbf{T} \mathbf{x} \rangle - d = (\mathbf{n}^{\mathrm{T}} \mathbf{T}) \mathbf{x} - d\mathbf{0}$$

More Structure?

Connecting

- Integrals
- Derivatives
- In higher dimensions
- And their transformation rules

"Exterior Calculus"

- Unified framework
- Beyond this lecture (take a real math course :-))

Vectors & Covectors in Function Spaces

Remark: Function Spaces

Discrete vector spaces

- Picking entries by index is a linear operation
- Can be represented by projection to vector (multiplication with "co-vector")

Example

- $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$
- $x \mapsto x_4$ is a linear maps
- Represented by ((0,0,0,1,0), x)
- "Linear form": $\mathbf{x} \mapsto \langle (0,0,0,1,0), \mathbf{x} \rangle$, in short, $\langle \cdot, (0,0,0,1,0) \rangle$, shorter: $(0,0,0,0,1,0) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

Linear Forms in Function Spaces

In function spaces

- Picking entries by x-axis is a linear operation
- Cannot be represented by projection to another function (multiplication with "co-vector")

Example

- $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$
- $L: (\mathbb{R} \to \mathbb{R}) \to \mathbb{R}$, $L: f \mapsto f(4.0)$ is a linear map
- A function g with $\langle g, f \rangle = f(4.0)$ does not exist

Dirac's "Delta Function"

Dirac Delta "Function"

- $\int_{\mathbb{R}} \delta(x) dx = 1$, zero everywhere but at x = 0
- Idealization ("distribution") think of very sharp peak

Distributions

Distributions

- Adding all linear forms to the vector space
 - All linear mappings from the function space to $\mathbb R$
- This makes the situation symmetric
- ullet δ is a distribution, not a (traditional) function

Formalization

- Different approaches (details beyond our course)
 - Limits of "bumps"
 - Space of linear-forms ("co-vectors", "dual functions")
 - Difference of complex functions on Riemann sphere (exotic)